3.7.75 \(\int \frac {x^{4/3}}{a+b x} \, dx\) [675]

3.7.75.1 Optimal result
3.7.75.2 Mathematica [A] (verified)
3.7.75.3 Rubi [A] (verified)
3.7.75.4 Maple [A] (verified)
3.7.75.5 Fricas [A] (verification not implemented)
3.7.75.6 Sympy [A] (verification not implemented)
3.7.75.7 Maxima [A] (verification not implemented)
3.7.75.8 Giac [A] (verification not implemented)
3.7.75.9 Mupad [B] (verification not implemented)
3.7.75.10 Reduce [B] (verification not implemented)

3.7.75.1 Optimal result

Integrand size = 13, antiderivative size = 123 \[ \int \frac {x^{4/3}}{a+b x} \, dx=-\frac {3 a \sqrt [3]{x}}{b^2}+\frac {3 x^{4/3}}{4 b}-\frac {\sqrt {3} a^{4/3} \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt {3} \sqrt [3]{a}}\right )}{b^{7/3}}+\frac {3 a^{4/3} \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 b^{7/3}}-\frac {a^{4/3} \log (a+b x)}{2 b^{7/3}} \]

output
-3*a*x^(1/3)/b^2+3/4*x^(4/3)/b+3/2*a^(4/3)*ln(a^(1/3)+b^(1/3)*x^(1/3))/b^( 
7/3)-1/2*a^(4/3)*ln(b*x+a)/b^(7/3)-a^(4/3)*arctan(1/3*(a^(1/3)-2*b^(1/3)*x 
^(1/3))/a^(1/3)*3^(1/2))*3^(1/2)/b^(7/3)
 
3.7.75.2 Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.14 \[ \int \frac {x^{4/3}}{a+b x} \, dx=\frac {-12 a \sqrt [3]{b} \sqrt [3]{x}+3 b^{4/3} x^{4/3}-4 \sqrt {3} a^{4/3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )+4 a^{4/3} \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )-2 a^{4/3} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} \sqrt [3]{x}+b^{2/3} x^{2/3}\right )}{4 b^{7/3}} \]

input
Integrate[x^(4/3)/(a + b*x),x]
 
output
(-12*a*b^(1/3)*x^(1/3) + 3*b^(4/3)*x^(4/3) - 4*Sqrt[3]*a^(4/3)*ArcTan[(1 - 
 (2*b^(1/3)*x^(1/3))/a^(1/3))/Sqrt[3]] + 4*a^(4/3)*Log[a^(1/3) + b^(1/3)*x 
^(1/3)] - 2*a^(4/3)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x^(1/3) + b^(2/3)*x^(2/3 
)])/(4*b^(7/3))
 
3.7.75.3 Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.07, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {60, 60, 70, 16, 1082, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{4/3}}{a+b x} \, dx\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {3 x^{4/3}}{4 b}-\frac {a \int \frac {\sqrt [3]{x}}{a+b x}dx}{b}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {3 x^{4/3}}{4 b}-\frac {a \left (\frac {3 \sqrt [3]{x}}{b}-\frac {a \int \frac {1}{x^{2/3} (a+b x)}dx}{b}\right )}{b}\)

\(\Big \downarrow \) 70

\(\displaystyle \frac {3 x^{4/3}}{4 b}-\frac {a \left (\frac {3 \sqrt [3]{x}}{b}-\frac {a \left (\frac {3 \int \frac {1}{\frac {a^{2/3}}{b^{2/3}}-\frac {\sqrt [3]{x} \sqrt [3]{a}}{\sqrt [3]{b}}+x^{2/3}}d\sqrt [3]{x}}{2 \sqrt [3]{a} b^{2/3}}+\frac {3 \int \frac {1}{\frac {\sqrt [3]{a}}{\sqrt [3]{b}}+\sqrt [3]{x}}d\sqrt [3]{x}}{2 a^{2/3} \sqrt [3]{b}}-\frac {\log (a+b x)}{2 a^{2/3} \sqrt [3]{b}}\right )}{b}\right )}{b}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {3 x^{4/3}}{4 b}-\frac {a \left (\frac {3 \sqrt [3]{x}}{b}-\frac {a \left (\frac {3 \int \frac {1}{\frac {a^{2/3}}{b^{2/3}}-\frac {\sqrt [3]{x} \sqrt [3]{a}}{\sqrt [3]{b}}+x^{2/3}}d\sqrt [3]{x}}{2 \sqrt [3]{a} b^{2/3}}+\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 a^{2/3} \sqrt [3]{b}}-\frac {\log (a+b x)}{2 a^{2/3} \sqrt [3]{b}}\right )}{b}\right )}{b}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {3 x^{4/3}}{4 b}-\frac {a \left (\frac {3 \sqrt [3]{x}}{b}-\frac {a \left (\frac {3 \int \frac {1}{-x^{2/3}-3}d\left (1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}\right )}{a^{2/3} \sqrt [3]{b}}+\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 a^{2/3} \sqrt [3]{b}}-\frac {\log (a+b x)}{2 a^{2/3} \sqrt [3]{b}}\right )}{b}\right )}{b}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {3 x^{4/3}}{4 b}-\frac {a \left (\frac {3 \sqrt [3]{x}}{b}-\frac {a \left (-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{a^{2/3} \sqrt [3]{b}}+\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 a^{2/3} \sqrt [3]{b}}-\frac {\log (a+b x)}{2 a^{2/3} \sqrt [3]{b}}\right )}{b}\right )}{b}\)

input
Int[x^(4/3)/(a + b*x),x]
 
output
(3*x^(4/3))/(4*b) - (a*((3*x^(1/3))/b - (a*(-((Sqrt[3]*ArcTan[(1 - (2*b^(1 
/3)*x^(1/3))/a^(1/3))/Sqrt[3]])/(a^(2/3)*b^(1/3))) + (3*Log[a^(1/3) + b^(1 
/3)*x^(1/3)])/(2*a^(2/3)*b^(1/3)) - Log[a + b*x]/(2*a^(2/3)*b^(1/3))))/b)) 
/b
 

3.7.75.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 70
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[ 
{q = Rt[-(b*c - a*d)/b, 3]}, Simp[-Log[RemoveContent[a + b*x, x]]/(2*b*q^2) 
, x] + (Simp[3/(2*b*q)   Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*x)^(1 
/3)], x] + Simp[3/(2*b*q^2)   Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], 
 x])] /; FreeQ[{a, b, c, d}, x] && NegQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 
3.7.75.4 Maple [A] (verified)

Time = 0.16 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.00

method result size
derivativedivides \(-\frac {3 \left (-\frac {b \,x^{\frac {4}{3}}}{4}+a \,x^{\frac {1}{3}}\right )}{b^{2}}+\frac {3 \left (\frac {\ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}\right ) a^{2}}{b^{2}}\) \(123\)
default \(-\frac {3 \left (-\frac {b \,x^{\frac {4}{3}}}{4}+a \,x^{\frac {1}{3}}\right )}{b^{2}}+\frac {3 \left (\frac {\ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}\right ) a^{2}}{b^{2}}\) \(123\)

input
int(x^(4/3)/(b*x+a),x,method=_RETURNVERBOSE)
 
output
-3/b^2*(-1/4*b*x^(4/3)+a*x^(1/3))+3*(1/3/b/(a/b)^(2/3)*ln(x^(1/3)+(a/b)^(1 
/3))-1/6/b/(a/b)^(2/3)*ln(x^(2/3)-(a/b)^(1/3)*x^(1/3)+(a/b)^(2/3))+1/3/b/( 
a/b)^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2/(a/b)^(1/3)*x^(1/3)-1)))*a^2/b^2
 
3.7.75.5 Fricas [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.94 \[ \int \frac {x^{4/3}}{a+b x} \, dx=\frac {4 \, \sqrt {3} a \left (\frac {a}{b}\right )^{\frac {1}{3}} \arctan \left (\frac {2 \, \sqrt {3} b x^{\frac {1}{3}} \left (\frac {a}{b}\right )^{\frac {2}{3}} - \sqrt {3} a}{3 \, a}\right ) - 2 \, a \left (\frac {a}{b}\right )^{\frac {1}{3}} \log \left (x^{\frac {2}{3}} - x^{\frac {1}{3}} \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right ) + 4 \, a \left (\frac {a}{b}\right )^{\frac {1}{3}} \log \left (x^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right ) + 3 \, {\left (b x - 4 \, a\right )} x^{\frac {1}{3}}}{4 \, b^{2}} \]

input
integrate(x^(4/3)/(b*x+a),x, algorithm="fricas")
 
output
1/4*(4*sqrt(3)*a*(a/b)^(1/3)*arctan(1/3*(2*sqrt(3)*b*x^(1/3)*(a/b)^(2/3) - 
 sqrt(3)*a)/a) - 2*a*(a/b)^(1/3)*log(x^(2/3) - x^(1/3)*(a/b)^(1/3) + (a/b) 
^(2/3)) + 4*a*(a/b)^(1/3)*log(x^(1/3) + (a/b)^(1/3)) + 3*(b*x - 4*a)*x^(1/ 
3))/b^2
 
3.7.75.6 Sympy [A] (verification not implemented)

Time = 26.34 (sec) , antiderivative size = 173, normalized size of antiderivative = 1.41 \[ \int \frac {x^{4/3}}{a+b x} \, dx=\begin {cases} \tilde {\infty } x^{\frac {4}{3}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {3 x^{\frac {7}{3}}}{7 a} & \text {for}\: b = 0 \\\frac {3 x^{\frac {4}{3}}}{4 b} & \text {for}\: a = 0 \\- \frac {3 a \sqrt [3]{x}}{b^{2}} - \frac {a \sqrt [3]{- \frac {a}{b}} \log {\left (\sqrt [3]{x} - \sqrt [3]{- \frac {a}{b}} \right )}}{b^{2}} + \frac {a \sqrt [3]{- \frac {a}{b}} \log {\left (4 x^{\frac {2}{3}} + 4 \sqrt [3]{x} \sqrt [3]{- \frac {a}{b}} + 4 \left (- \frac {a}{b}\right )^{\frac {2}{3}} \right )}}{2 b^{2}} + \frac {\sqrt {3} a \sqrt [3]{- \frac {a}{b}} \operatorname {atan}{\left (\frac {2 \sqrt {3} \sqrt [3]{x}}{3 \sqrt [3]{- \frac {a}{b}}} + \frac {\sqrt {3}}{3} \right )}}{b^{2}} + \frac {3 x^{\frac {4}{3}}}{4 b} & \text {otherwise} \end {cases} \]

input
integrate(x**(4/3)/(b*x+a),x)
 
output
Piecewise((zoo*x**(4/3), Eq(a, 0) & Eq(b, 0)), (3*x**(7/3)/(7*a), Eq(b, 0) 
), (3*x**(4/3)/(4*b), Eq(a, 0)), (-3*a*x**(1/3)/b**2 - a*(-a/b)**(1/3)*log 
(x**(1/3) - (-a/b)**(1/3))/b**2 + a*(-a/b)**(1/3)*log(4*x**(2/3) + 4*x**(1 
/3)*(-a/b)**(1/3) + 4*(-a/b)**(2/3))/(2*b**2) + sqrt(3)*a*(-a/b)**(1/3)*at 
an(2*sqrt(3)*x**(1/3)/(3*(-a/b)**(1/3)) + sqrt(3)/3)/b**2 + 3*x**(4/3)/(4* 
b), True))
 
3.7.75.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.04 \[ \int \frac {x^{4/3}}{a+b x} \, dx=\frac {\sqrt {3} a^{2} \arctan \left (\frac {\sqrt {3} {\left (2 \, x^{\frac {1}{3}} - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{b^{3} \left (\frac {a}{b}\right )^{\frac {2}{3}}} - \frac {a^{2} \log \left (x^{\frac {2}{3}} - x^{\frac {1}{3}} \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{2 \, b^{3} \left (\frac {a}{b}\right )^{\frac {2}{3}}} + \frac {a^{2} \log \left (x^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{b^{3} \left (\frac {a}{b}\right )^{\frac {2}{3}}} + \frac {3 \, {\left (b x^{\frac {4}{3}} - 4 \, a x^{\frac {1}{3}}\right )}}{4 \, b^{2}} \]

input
integrate(x^(4/3)/(b*x+a),x, algorithm="maxima")
 
output
sqrt(3)*a^2*arctan(1/3*sqrt(3)*(2*x^(1/3) - (a/b)^(1/3))/(a/b)^(1/3))/(b^3 
*(a/b)^(2/3)) - 1/2*a^2*log(x^(2/3) - x^(1/3)*(a/b)^(1/3) + (a/b)^(2/3))/( 
b^3*(a/b)^(2/3)) + a^2*log(x^(1/3) + (a/b)^(1/3))/(b^3*(a/b)^(2/3)) + 3/4* 
(b*x^(4/3) - 4*a*x^(1/3))/b^2
 
3.7.75.8 Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.11 \[ \int \frac {x^{4/3}}{a+b x} \, dx=-\frac {a \left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left ({\left | x^{\frac {1}{3}} - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{b^{2}} + \frac {\sqrt {3} \left (-a b^{2}\right )^{\frac {1}{3}} a \arctan \left (\frac {\sqrt {3} {\left (2 \, x^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{b^{3}} + \frac {\left (-a b^{2}\right )^{\frac {1}{3}} a \log \left (x^{\frac {2}{3}} + x^{\frac {1}{3}} \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{2 \, b^{3}} + \frac {3 \, {\left (b^{3} x^{\frac {4}{3}} - 4 \, a b^{2} x^{\frac {1}{3}}\right )}}{4 \, b^{4}} \]

input
integrate(x^(4/3)/(b*x+a),x, algorithm="giac")
 
output
-a*(-a/b)^(1/3)*log(abs(x^(1/3) - (-a/b)^(1/3)))/b^2 + sqrt(3)*(-a*b^2)^(1 
/3)*a*arctan(1/3*sqrt(3)*(2*x^(1/3) + (-a/b)^(1/3))/(-a/b)^(1/3))/b^3 + 1/ 
2*(-a*b^2)^(1/3)*a*log(x^(2/3) + x^(1/3)*(-a/b)^(1/3) + (-a/b)^(2/3))/b^3 
+ 3/4*(b^3*x^(4/3) - 4*a*b^2*x^(1/3))/b^4
 
3.7.75.9 Mupad [B] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.02 \[ \int \frac {x^{4/3}}{a+b x} \, dx=\frac {3\,x^{4/3}}{4\,b}-\frac {3\,a\,x^{1/3}}{b^2}+\frac {a^{4/3}\,\ln \left (\frac {9\,a^{7/3}}{b^{1/3}}+9\,a^2\,x^{1/3}\right )}{b^{7/3}}+\frac {a^{4/3}\,\ln \left (9\,a^2\,x^{1/3}+\frac {9\,a^{7/3}\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{b^{1/3}}\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{b^{7/3}}-\frac {a^{4/3}\,\ln \left (9\,a^2\,x^{1/3}-\frac {9\,a^{7/3}\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{b^{1/3}}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{b^{7/3}} \]

input
int(x^(4/3)/(a + b*x),x)
 
output
(3*x^(4/3))/(4*b) - (3*a*x^(1/3))/b^2 + (a^(4/3)*log((9*a^(7/3))/b^(1/3) + 
 9*a^2*x^(1/3)))/b^(7/3) + (a^(4/3)*log(9*a^2*x^(1/3) + (9*a^(7/3)*((3^(1/ 
2)*1i)/2 - 1/2))/b^(1/3))*((3^(1/2)*1i)/2 - 1/2))/b^(7/3) - (a^(4/3)*log(9 
*a^2*x^(1/3) - (9*a^(7/3)*((3^(1/2)*1i)/2 + 1/2))/b^(1/3))*((3^(1/2)*1i)/2 
 + 1/2))/b^(7/3)
 
3.7.75.10 Reduce [B] (verification not implemented)

Time = 0.00 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.78 \[ \int \frac {x^{4/3}}{a+b x} \, dx=\frac {-4 a^{\frac {4}{3}} \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 x^{\frac {1}{3}} b^{\frac {1}{3}}}{a^{\frac {1}{3}} \sqrt {3}}\right )-2 a^{\frac {4}{3}} \mathrm {log}\left (a^{\frac {2}{3}}-x^{\frac {1}{3}} b^{\frac {1}{3}} a^{\frac {1}{3}}+x^{\frac {2}{3}} b^{\frac {2}{3}}\right )+4 a^{\frac {4}{3}} \mathrm {log}\left (a^{\frac {1}{3}}+x^{\frac {1}{3}} b^{\frac {1}{3}}\right )-12 x^{\frac {1}{3}} b^{\frac {1}{3}} a +3 x^{\frac {4}{3}} b^{\frac {4}{3}}}{4 b^{\frac {7}{3}}} \]

input
int((x**(1/3)*x)/(a + b*x),x)
 
output
( - 4*a**(1/3)*sqrt(3)*atan((a**(1/3) - 2*x**(1/3)*b**(1/3))/(a**(1/3)*sqr 
t(3)))*a - 2*a**(1/3)*log(a**(2/3) - x**(1/3)*b**(1/3)*a**(1/3) + x**(2/3) 
*b**(2/3))*a + 4*a**(1/3)*log(a**(1/3) + x**(1/3)*b**(1/3))*a - 12*x**(1/3 
)*b**(1/3)*a + 3*x**(1/3)*b**(1/3)*b*x)/(4*b**(1/3)*b**2)